12. LINEAR PROGRAMMING (L.P.P)

MCQ (Multiple Choice Questions):

- 1. Objective function of a L.P.P is :
 - a) A quadratic polynomial b) a constraint
 - C) A linear function to be optimised d) none of these
- 2. The optimal value of the objective function is attained at the points
 - a) Given by the intersection of inequalities with x-axis only.
 - b) Given by corner points of the feasible region.
 - c) Given by the intersection of inequalities with the axes only.
 - d) None of these.
- 3. The solution set of the inequality 3x + 5y < 4 is
 - a) Open half plane not containing the origin.
 - b) Whose xy-plane except the points lying on the line 3x + 5y = 4.
 - c) Open half plane containing the origin.
 - d) None of these.
- 4. The corner points of the feasible region determined by the system of Linear constraints are (0,0), (0,40), (20,40), (60,20), (60,0). The objective function is Z = 4x + 3y.

Compare the quantity in column A and column B

Column A	Column B
Maximum of Z	325

- a) The quantity in column A is greater.
- b) The quantity in column B is greater.
- c) The two quantities are equal.
- d) The relationship cannot be determined on the basis of the information supplied.
- 5. The point which does not lie in the half plane $2x + 3y 12 \le 0$ is a) (1,2) b) (2,1) c)(2,3) d) (-3,2)

6. The feasible solution for a LPP is shown in given figure. Let Z = 3x - 4y Be the objective function. Minimum of Z occurs at :

- 7. Feasible region in the set of points which satisfy
 - a) The objective functions
 - c) All of the given constraints d) None of these
- 8. Region represented by $x \ge 0, y \ge 0$ is
 - a) First quadrant
 - c) Third quadrant

b)second quadrant d) fourth quadrant

b) some the given constraints

- 9. In maximization problem, optimal solution occurring at corner points yields the :
 - a) Highest value of Z

- b) lowest value of Zd) mean value of Z
- C) Mid values of Z

10. The inequality or equality or restrictions on the variables are called:

a) Objective function

b) constraints

c) Optimization

d) None of these

11. The feasible region for a LPP is shown in the figure. The maximum z = 3x + 4y Subject to the constraints $x + y \le 4, x \ge 0, y \ge 0$. Is:

12. The variables involved in the L.P.P are called :

- a) Depended variables
- b) Decision variables
- c) Independent variables
- d) none of these
- 13. Linear programming is a method of finding anvalue of a linear function of several variables subject to the conditions that variables are Non-negative and satisfy a set of linear equations or ineqautions.
 - a) Average value b) Maximum value
 - c) Minimum value

d) optimal value

- 14. The region other than the feasible region is called :
 - a) Infeasible region b) Bounded region
 - C) Unbounded region d) none of these
- 15. The common region determined by the constraints and non-negativity Restrictions of L.P.P is called:
 - a) Bounded region
- b) Unbounded region

c) Feasible region

d) none of these

16. The feasible region for an L.P.P is always aPolygon.

- a) Convex Polygon b) Concave polygon
- c) Regular polygon

d) irregular polygon

17. If Z = 7x + y, subject to the constraints $5x + y \ge 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$. The minimum value of Z occurs at:

a) (3,0) b) $(\frac{1}{2}, \frac{5}{2})$ c) (7,0) d) (0,5)

18. If Z = 3x + y, subject to the constraints $x + 3y \ge 3$, $x + y \ge 2$,
 $x \ge 0, y \ge 0$. The minimum value of Z occurs at:
a) 9900a) 9b) 7c)10d)None of these

Assertion-and-Reason Type Questions:

Each question consists of two statements, namely, Assertion (A) and Reason(R). For selecting the correct answer, use the following code:

- a) Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
- b) Both Assertion (A) and Reason (R) are true and Reason (R) is a not a correct explanation of Assertion (A).
- c) Assertion (A) is true and Reason (R) is false.
- d) Assertion (A) is false and Reason (R) is true.

19.

Assertion (A)	Reason (R)
The objective function	Let R be the feasible region for
Z = x + y	LPP and let $Z = ax + by$ be the
Subject to the constraints:	Objective function. If R is
$3x + y \le 6$, $x + 2y \le 4$,	bounded, then the objective
$x \ge 0$, $y \ge 0$	function Z has both maximum or
Has a maximum.	minimum value on R and each of
	these occurs at a corner point
	Of R.

20.

Assertion (A)	Reason (R)
The objective function	Let R be the feasible region for
Z = 3x + 4y subject to the	LPP and let $Z = ax + by$ be the
Constraints $x + y \le 4, x \ge 0$,	Objective function. If R is
$y \ge 0$ has a maximum.	bounded, then the objective
	function Z has both maximum or
	minimum value on R and each of
	these occurs at a corner point
	Of R.

Prepared By

MOHAMMED IDREES .T, M.Sc., B.Ed.

PGT (MATHEMATICS)